Disclosures

- I have no financial relationships with commercial entities
Objectives

- Definition of Obstructive Sleep Apnea
- Epidemiology and Pathophysiology
- Impact of OSA in pediatric population
- Diagnosis of OSA
 - Indications for sleep studies
- Management of OSA
Obstructive Sleep Apnea (OSA) (American Thoracic Society)

Disorder of breathing during sleep characterized by prolonged partial upper airway (Uaw) obstruction and/or intermittent complete obstruction (obstructive apneas) that disrupts normal ventilation during sleep and normal sleep patterns

- Sleep fragmentation
- Intermittent hypoxemia
- Intermittent hypercarbia
Spectrum of Obstructive Sleep Disordered Breathing

- APNEA
- HYPOPNEA
- OBSTRUCTIVE HYPOVENTILATION
- RESPIRATORY EFFORT RELATED AROUSAL (UARS)
- SNORING

Degree of Obstruction

LOW to HIGH
OSA: Epidemiology

- Prevalence of snoring: 7-12%

- **Prevalence of OSA**
 - Infants: 1 - 2%
 - Children: 2 - 4%
 - Adults:
 - Women 2 - 4%
 - Men 3 - 7%

- **Gender**
 - Prepubertal: M=F
 - Post pubertal: M>F

- **Peak incidence**
 - 1.5 – 5 years (coincides with ATH)
 - Adolescence

- **Lean vs. Obese**

<table>
<thead>
<tr>
<th></th>
<th>Lean</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snoring</td>
<td>8 – 10%</td>
<td>50%</td>
</tr>
<tr>
<td>OSA</td>
<td>2 – 3%</td>
<td>36%</td>
</tr>
<tr>
<td>OSA</td>
<td></td>
<td>60% (metabolic syndrome)</td>
</tr>
</tbody>
</table>

- Risk of OSA increase by 12% for 1 kg/m² BMI
Risk factors for OSA

- Obesity
- Male
- African-American
- Prematurity
- Cigarette smoke exposure
- Adenotonisllar hypertrophy
- Sickle cell disease
- Down syndrome
- Prader Willi syndrome
- Cranio-facial disorders
- Neuromuscular disorders
- Cerebral palsy
- Asthma
- Allergic rhinitis
Pediatric OSA: Overview

Pathophysiology

Anatomy
- Craniofacial size
- Soft tissues
- Fat distribution
- Ethnicity

Neuromuscular
- Airway collapsibility
- Arousal threshold
- Ventilatory control
- Fluid shift
- Lung Volume

OSA
- Intermittent Hypoxia
- Sleep Fragmentation
- Hypercarbia
- ↑ Thoracic pressure changes

Sleep
- Gene trait, susceptibility
- Environment, diet, exercise

Consequences
- Metabolic
- Cardiovascular
- Neurocognitive
- Autonomic
Adenoid facies: Long face syndrome

Features
- ↑ vertical height of upper face
- high–arched palate
- Narrow maxilla, and small mandible
- disuse atrophy of nose
- Cause: Chronic nasal obstruction

Consequences
- Risk for OSA
- Adverse craniofacial development
- Future risk for OSA as adults
Craniofacial Syndromes

- Crouzon
- Treacher Collins
- Apert
- Hemi-hypoplasia

Abnormal dental alignment
Obesity & OSA: Partners in Crime!

- Fatty infiltrates of UAw
- Decreased FRC
- Decrease lung compliance
- Increased resistive load
- Affect upper airway patency

Risk of OSA in obese:
- Odds ratio of 4.5
- ~ 36% - 55% have OSA
- Snoring
- 1% increase in BMI → 12% risk for OSA
- Post-T&A ~ 2/3rd have residual OSA
Infant OSA

- Choanal stenosis
- Laryngomalacia
- Laryngeal lesions
- GERD → UA swelling
- Craniofacial abnormalities
 - Micrognathia (Pierre Robin)
- Hypotonia
- Cerebral palsy
- Genetic disorders
OSA: Adverse Sequelae

Individual *genetic and environmental susceptible factors* influences the ultimate expression of OSA sequelae….

OSA
- Intermittent Hypoxemia
- Hypercarbia
- Sleep fragmentation
- ↑ Respiratory Effort

Cardiovascular
- BP dysregulation
- Endothelial Dysfunction

Metabolic
- Dyslipidemia

Endocrine
- Insulin resist

Neuro-cognitive
- EDS, ADD, poor memory
- Poor concentration

Nocturnal Enuresis
Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome

OSA

Sleep Fragmentation

- Intermittent Hypoxia
 - Oxidative stress
 - Nitric Oxide

- Neurohormonal Changes

- Sympathetic Tone

Inflammation

- Leptin, Resistin, Adiponectin
- Plasma Adipokines Levels
- IL-6
- CRP
- TNF-α

Metabolic syndrome

- Obesity
- Insulin resistance
- Hypertension
- Dyslipidemia

Sleep Fragmentation/Sleep deprivation

Gozal et al
Type 1 OSA

Type 2 OSA
Diagnosis of OSA

- Evaluate symptoms and morbidity
 - History, questionnaires
- Assessment for severity of obstruction
 - Polysomnogram (Sleep Study)
- Assessment for site of obstruction:
 - Clinical examination
 - Radiological evaluation
 - Neck films
 - Cine MRI
 - CT nasal cavity
 - Flexible nasopharyngoscopy (bedside)
 - Rigid UA endoscopy under anesthesia
 - Sleep endoscopy
Clinical features of OSAS

Night time symptoms
- Snoring
- Apneas
- Mouth breathing
- Choking or snorting arousals
- Paradoxical breathing
- Restless sleep
- Hyper-extended neck
- Frequent awakening
- Recent onset parasomnias

Daytime symptoms
- Excessive daytime sleepiness
- Morning headaches
- Mid-afternoon dip
- Hyperactivity
- Attention deficits
- Poor school performance
- Aggressive behaviors
- Chronic cough
Physical Examination

- **Weight**
- **BMI**
- **Neck circumference**
- **Mouth**
 - Bite
 - Tonsils
 - Malampatti type
 - Airway crowding
 - Macroglossia
- **Nose:**
 - Deviated septum
 - Turbinates
 - Polyp
 - Adenoids
- **Face**
 - Mid-face hypoplasia
 - Retro/micrognathia
 - Allergic shinners
- **Respiratory**
- **Cardiac:** S2 and murmu
Polysomnography (Sleep Study)

- EEG - For sleep stages
- EMG – for chin tone and leg movements
- EOG – eye movements
- Nasal pressure
- Oro-nasal thermister
- Chest and abdominal belts/summary – respiratory effort
- Oximetry with waveform
- ETCO2 with waveform
- Snoring microphone
- EKG - heart rate and rhythm
- Body position
- Video

Grigg-Damberger et al, JCSM 2007: 3: 201
Indications for Sleep Studies

<table>
<thead>
<tr>
<th>Indications</th>
<th>Not indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>Typical Parasomnianias</td>
</tr>
<tr>
<td>Sleep related breathing disorders</td>
<td>Insomnia</td>
</tr>
<tr>
<td>OSA</td>
<td>Circadian rhythm sleep disorders</td>
</tr>
<tr>
<td>Central sleep apnea</td>
<td>Restless legs syndrome</td>
</tr>
<tr>
<td>Sleep Hypoventilation</td>
<td></td>
</tr>
<tr>
<td>Periodic breathing</td>
<td></td>
</tr>
<tr>
<td>Sleep hypoxemia</td>
<td></td>
</tr>
<tr>
<td>Non-Respiratory</td>
<td></td>
</tr>
<tr>
<td>Periodic limb movement of sleep (PLMS)</td>
<td></td>
</tr>
<tr>
<td>Narcolepsy</td>
<td></td>
</tr>
<tr>
<td>Nocturnal events</td>
<td></td>
</tr>
<tr>
<td>seizures vs. parasomnia</td>
<td></td>
</tr>
<tr>
<td>REM behavior disorders</td>
<td></td>
</tr>
</tbody>
</table>
Obstructive apnea
Snoring and abnormal PSG findings

- TuCASA and Penn State Study
 - Habitual snoring: 15% of population
 - Witnessed apnea: 5.2%
 - PSG criteria
 - AHI > 1/hr: 25%
 - AHI > 5/hr: 1.1%

Goodwin JL et al J Clin Sleep Med 2005
Goodwin JL et al Sleep 2003
Severity of OSA

Children

- Mild OSA
 - AHI 1.5 – 5/hour
- Moderate OSA
 - 5-10/hour
- Severe OSA
 - > 10/hour

Mild degree of Sleep disordered breathing in children
- Persistent snoring
- Flow limitation seen on NAP signals
- Persistent mouth breathing

Adults

- AHI > 5/hour with Symptoms
- AHI > 15/hour (without Sx)
 - Mild: 5-15/hour
 - Moderate: 15-30/hour
 - Severe: > 30/hour
Treatment of OSA in children

- Life style changes
 - Weight loss
 - Positional
 - Alcohol avoidance

- Pharmacological treatment
 - Inhaled steroids
 - Leukotriene antagonist
 - Oxygen

- ORL surgical treatment
 - Adenoidectomy
 - Tonsillectomy
 - Supraglottoplasty

- Positive airway pressure therapy
 - CPAP
 - Bi-PAP
Adeno-tonsillectomy

- First line of therapy
- Recent data: 25-60% have residual OSA
- Discrepancy between tonsil size severity of OSA
- No consensus AHI cut-off to perform T&A, (mostly AHI > 5)
 - Jury is still out for AHI > 1 but < 5
- Adenoidectomy: 30% chance for 2nd surgery within 3 yr
- Complications: pain, bleeding and death

Medical treatment

- Inhaled steroids
- Montelukast antagonist
- Oxygen
Effect of Intranasal Budesonide on Mild OSA

Randomized double blind placebo controlled trial with the cross over design on children with mild OSA

Kheirandish-Gozal et al, Pediatrics 2008
Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children

Brian McGinley, MDa, Ann Halmower, MDb, Alan R. Schwartz, MDc, Philip L. Smith, MDc, Susheel P. Patil, MD, PhDc, and Hartmut Schneider, MD, PhDc
Positive airway pressure therapy (CPAP and BiPAP)
Positive airway pressure therapy

- First described use in OSA in 1981
- Considered the "gold standard" of therapy
- Treatment, not cure
- Stents UAw open, preventing dynamic collapse
- Increases FRC, pulmonary reserve
CPAP mask

Resmed Infant Bubble Mask Respironics Small Child Profile LiteSleepNet “Mini-Me”
Successful CPAP therapy

- Pre-titration mask fitting and habituation
- Use of ramp, heated humidification
- Attention to air leak and skin irritation
- Adjuvant medications (nasal steroids, montelukast)
- Sleep scheduling modification
- Monitoring compliance & efficacy with smart cards
AAP Clinical Practice Guidelines - 2012

Diagnosis and Management of Childhood OSAS

1) All children/adolescents should be screened for snoring as part of routine health maintenance (R)

2) In-lab attended PSG should be performed in children with snoring and symptoms of and/or risk factors for OSAS to determine presence and severity (R)

3) Adenotonsillectomy is recommended as the first-line treatment of patients with adeno-tonsillar hypertrophy without surgical contraindications (R)

4) Continuous positive airway pressure is recommended as treatment if adenotonsillectomy is not performed or if signs/symptoms or objective evidence of OSAS persists postoperatively (R)

Marcus et al; Pediatrics Vol 30(3) 2012
Consider referral to sleep center

- Very severe OSA
- Residual OSA after surgery
- Children on CPAP/BiPAP
- Associated central sleep apnea
- OSA in Craniofacial /syndromic and neuromuscular disorders
- With other co-morbid sleep disorders
 - Circadian sleep disorders, Insomnia
 - Restless legs syndrome & periodic limb movements
OSA is very common in children, but under recognized & under treated

Carries many short & long term health risks, some of which are unique to children and may be irreversible

Consider medical management for mild OSA

Although A&T is effective, recent data shows increasing number of children with residual OSA despite surgery

Consider referral to pediatric sleep specialist when indicated
Thank you