Avoiding Complications of ACL Surgery

Thomas J. Gill, MD
Chief, MGH Sports Medicine Service
Dept of Orthopedic Surgery
Massachusetts General Hospital
Associate Professor of Orthopedic Surgery
Harvard Medical School
Boston, MA

ACL Complications

• Not “if”, but “when”…

Incidence

• 60 - 100,000 ACL reconstructions/year
• 5% - 15% failure rate
Causes of Failure

- Technical errors
- Traumatic failure
- Secondary instability
- Biologic failure

Common Complications

- Loss of motion
- Persistent pain
- Recurrent instability

Recurrent Instability

- 8% of Failures
- Causes:
 - Technical Errors
 - Traumatic Failure
 » Secondary Instability
 » Biologic Failure
Pre-Operative Considerations

- Patient selection
- Timing selection
- Graft selection
- Procedure selection

Patient selection

- Age
- BMI
- Alignment
- Past surgical history
- Arthrosis
- Ability to do rehab properly

When is a patient “ready for surgery”…?

- Time from injury
 - not a “cookbook” answer
 - “6 weeks”
- ROM
 - 0-135 degrees
- Swelling/effusion
- Muscle status
Graft Selection: Allografts

Area of Controversy: KNOW YOUR SOURCE!

Pro:
- Shortened OR time
- Smaller incisions
- No limit on tissue availability

Con:
- Slower incorporation
- Infection / immunologic reaction risk
- Altered mechanical properties (sterilization)

Allograft: Sterilization and Storage

- **Gamma Irradiation**
 - 3 Mrad+ Needed to Sterilize Fresh Frozen
 - Can Affect Biomechanical Properties
- **Ethylene Oxide**
 - Associated Inflammation, effusion, graft failure
- **Sterilization Fluids**
 - Efficacy and Safety Not Established
- **Fresh Frozen / Freeze Dried**
 - Decreased Immunogenicity

The MGH / UMass Experience

“What I See...”

- Largest revision group = young athletes with allograft reconstruction
 - Age < 25y
 - Athletic Population
 - Male = Female
Intra-Operative Considerations

- Graft harvest
- Notch assessment
- Tunnel placement
- Instrumentation

Harvest: Patellar Tendon

- Problem
 » Small / thin plugs
 » Fractured bone plugs
 » Patellar fracture

Solution

» Bone graft the plug, augment from coring reamer in tibia

» Reverse the graft
 » use Krakow sutures
 » tie over button

(Courtesy of Don Johnson)
Prevention: Patellar / Bone Plug Fracture

- Use 2.0mm drill rather than saw for transverse cuts
- Use saw like a cast saw
 - Follow same line – no double cuts
 - Avoid deep ‘V’
 - Trapezoid shape, esp on patella
- Lift out gently with an osteotome
 - do not “lever”
 - re-cut with saw if needed

Patellar Fracture at Harvest

- Don’t past-point with saw on longitudinal cuts
- Recognize early
- Avoid “It’ll be O.K…”
Patellar Fracture at Harvest

- 2 cannulated 4.5mm screws
- No change in rehab
- Let patient know…

Harvest: Hamstrings

- Problem
 » Graft cut off short

Prevention

- Adequate incision
- Cut bands to gastroc
 » especially Semi-t
- Tendon should pull past tibial tubercle with elastic recoil
Prevention

- Stay parallel – flex knee
 - Visualize 3-D anatomy
- Blunt dissection with finger until m-t junction
- Watch for small bands when pushing stripper forward
- See what you cut!

Solution

- Convert to different graft
 - Patellar tendon
 - Allograft
- Avoid urge to use doubled graft, tripled graft, or short graft

Problem: Dropped Graft

#@#$^&^#$!!!
Solution

- Stay calm…
- Change graft source
 - Obtain from same side
 - Allograft
 - Fellow/resident…
- Cleanse graft
 - Chlorhexidine soaking
 - Serial dilutions - triple antibiotics

Prevention

- 100% avoidable
- Wrap around finger before transport
- Only surgeon touches graft
 - No “passing” from nurse

Notch Considerations

- Indications for Notchplasty
- 15 mm
 - open pituitary rongeur
- Sex of patient
- Type of reconstruction
- Check graft in full extension after femoral fixation
Notchplasty: Is It Necessary?

- Narrow notch
 - Anatomic Variant / Association
- Strong association between notch stenosis and ACL injuries
 - Uhorchak 2003; Shelbourne 1998; Souryal 1993
- Notch may regrow up to 1 cm
 - Safran and Harner 1995

What Are The Problems?

- Graft Impingement
 - Loss of Extension
 - Cyclops Lesion
 - Mechanical Damage to Graft
- Both Are Detrimental to Ligamentization
 - Alters Vascularity
 - Limits Cellular Ingrowth

Tunnel Placement

- Single most important factor to avoid comps…!!
Tunnel Placement

- Traditional Reconstruction
 » 11 o’clock / 1 o’clock
 » AP stability
- Recent Literature
 » 10 o’clock / 2 o’clock
 » Same AP stability
 » ↑ Rotatory stability

How do we get it wrong?
- Femur too anterior
- Posterior wall blow out
- Tibia too anterior
- Tibia posterior
- Vertical tunnel

Why do we care?
- Biomechanical effects

Femoral Tunnel: Too Anterior

- Tensioned in Extension
 » Loss of flexion
 » Stretching of graft
- Tensioned in Flexion
 » Laxity in extension
- Vertical Graft
 » Rotational instability
Solution

- Use a guide!!
- Slightly anterior
 » Trough over the top
 » Bone graft, re-drill
- Far anterior
 » Drill another tunnel behind
 » Bone graft anterior tunnel
 » Fill defect with a Composite Screw

Prevention

- Must see “over the top”
 » Don’t guess
 » “Resident’s ridge”

Femoral Tunnel: Too Posterior

- Hard to do …
- Main issue is loss of fixation
- Tunnel blowout
Solution

- Change from screw to endo-button fixation
- 2 incision technique

Prevention

- Make a footprint prior to drilling

Double Tunnel Problems

- Double tunnels become confluent
New Problem: Femoral Fixation for Soft Tissues

- Blow out of proximal femoral cortex
- More common with 10/2 tunnels

Solution

- Small tunnel
 - 2 Endobuttons… "ExoButton!"
- Large tunnel
 - secondary incision
 - tie leader sutures over post/button

Prevention

- More common problem with “anatomic” grafts
- Measure femoral tunnel length
 - Endo drill
 - 4.5 drill bit
 - depth gauge
- Stop drilling with any resistance
 - especially > 40 mm
Tibial Tunnel: Too Anterior

- Graft impingement in extension
- Excess graft strain in flexion

Solution

- Make notch bigger
- Chamfer back of tunnel

Prevention

- Anterior horn LM
- Downslope of medial spine
- Posterior half of footprint
- Double check with pin in extension
Prevention

Tibial Tunnel

- **Error**: Posterior
 - Excess laxity in flexion
- **Error**: Vertical/midline graft
 - Rotational instability
- **Error**: Medial/lateral
 - Wall and roof impingement

Why Does Fixation Fail?

- Bone density
- Tunnel integrity
- Tunnel size
- Graft type
- Fixation technique
Interference Screws

- Good for BTB
- May be inadequate for soft tissue alone
- Composite screws
- Absorbable screws
- Metal screws

Alternative Fixation Techniques

- Endo-button
- Cross-pins
- Intra-Fix
- “Screw/Post”
- Staple

Screw Issues

- >15° divergence can cause loss of fixation
- Material properties
- Size / length
Prevention

- Guide wire
- 2-pin passer

Problem

- Screw cuts bone plug off graft

Prevention

- Use low anteromedial portal
- Hyperflex knee until guidepin is straight
Loss of Fixation - loose screw

- Use correct size screw
 » 7mm on femur
 » 8/9mm on tibia
 » Oversize for allografts
 » One screw size larger than tunnel for hamstrings
 » Augment with endobutton or button

Prevention of Tunnel Enlargement

- Fix soft tissues close to aperture

Graft / Tunnel Mismatch

- Solution
 » Advance graft into femoral tunnel
 » Trough the tibia and staple
 » Fold over bone plug onto tendon
- Prevention
 » Measure graft and tunnel length
Trouble with Graft Passage

- No need for press-fit!!
- “Easy 10, snug 9….”
- Clear soft tissue at tibia
- Bullet shape femoral block

Graft Tensioning

- “70N”…why?
- Flexion
 - Overconstrains
 - Limits extension
- Extension
 - Can’t overconstrain
 - Double check when using allografts
 - ? Loose in flexion

Summary

- Most complications are avoidable, but not all
- Think of each step and what could go wrong
- Recognize early
- Treat immediately
- Let patients know…
Thank you…