Acute Low Back Pain in the Athlete: Myofascial injury and Enthesopathy

Ariana Vora, MD
Staff Physiatrist at Massachusetts General Hospital Spaulding Rehabilitation Network

Disclosures/Conflict of Interest
• None

What is the pain generator?
• Potential causes of acute LBP in the athlete
 – Disc disruption/annular tear
 – Spondylolysis
 – Endplate fracture
 – Zygaphysial joint arthropathy
 – Sacroiliac joint
 – Myofascial
 – Enthesis
• We are trained to localize and target a single structural pain generator
MRI Findings accompanying annular tears

- Ultrashort echo time (TE) MRI pulse sequence images of patients with lumbar degeneration vs. normals
- High signal in annulus fibrosis AND also in:
 - Anterior and posterior longitudinal ligaments
 - Cartilaginous endplate
 - Ligamentum flavum
 - Interspinous ligaments
 - Insertions of ligaments

MRI findings accompanying annular tears

- Hypertrophied ligaments and scar tissue enhanced with contrast
- Disc degeneration does not occur in isolation
- Changes are seen in a functional unit of tension and compression elements
- Spine as integrated, interdependent, and dynamic biologic structure

Activity-specific nature of MSK pain

- Higher incidence of axial LBP in rowers and American football compared with other collegiate sports

- LBP comprises 20% of musculoskeletal complaints in Finnish soldiers

- LBP less common than knee, thigh, and ankle injury in collegiate soccer players

Transmission of mechanical force

- Mechanical force applied to extracellular matrix of muscle is transmitted to:
 - extracellular matrix of adjacent muscles
 - antagonist muscles
 - surrounding bony structures

Transmission of mechanical force: Human studies

- Force generation in a single human finger is coupled by force production in adjacent fingers

- Truncal muscles act synergistically during voluntary body sway

Biotensegrity

- Derived from tensional integrity concept described by R. Buckminster Fuller
- Functionally interdependent elements
- Architectural concept balancing tension cables and steel rods
 - Kenneth Snelson’s Needle Tower
Biotensegrity

- Vertebral bodies supported by a highly organized continuous tension network consisting of muscle, ligaments and fascia
- Bones act as compression rods
- Soft tissues act as tension elements
- Mechanical load encountered anywhere in the body is distributed through continuous network of fascia, ligaments and muscles suspending entire skeleton, including lumbar spine

Enthesis

- Site of tendon, ligament, joint capsule or fascia attachment to bone
- Biomechanical function: Absorb shock at junction between bone and soft tissue fibers while maintaining constant length
- Enthesis organ:
 - Functional unit of the musculoskeletal system
 - enthesis, fibrocartilage, fascia, bursa, fat pad, and adjacent trabecular bone

Enthesopathy: histology

- Thought to result from repeated mechanical overload
 - Tearing
 - Calcification
 - Fibroblast proliferation
 - Neovascularization
 - Vascular endothelial growth factor is highly expressed in degenerative tendons, barely present in healthy tendons

Sacroiliac joint

- Depending on the source, 6%-13% of axial low back pain is attributed to the sacroiliac joint
The sacroiliac joint/ligament complex

- Diarthrodial joint wedging sacrum between two iliac bones forming posterior pelvic wall
- Joint space: 1-2mm wide, lined with hyaline cartilage
- Superiorly: histologic qualities of a symphysis, attached to dense network of surrounding stabilizing ligaments
- Inferiorly: histologic qualities of synovial joint

Sacroiliac ligaments

- Interosseous fibers: thickest connection between sacrum and ilium
- Anterior and posterior sacroiliac ligaments
 - Ligaments and joint are so closely connected that the anterior sacroiliac ligament is a continuation of the anterior capsule

Innervation of sacroiliac complex

- Under debate
- Mechanoreceptors and nerve receptors identified with gold chloride staining
- Nerve fascicles with myelinated fibers, unmyelinated fibers, paciniform mechanoreceptors and nonpaciniform mechanoreceptors
 - Pain and proprioception pathways

Innervation of sacroiliac complex

- Fortin et al: Exclusive innervation from dorsal rami at S1-S4

- Electrical and mechanical stimulation studies: innervation by L4-S1 nerve roots with secondary contribution from gluteal nerve

Extra-articular sacroiliac pain

- 120 study subjects from two RCTs given intra-articular vs. combined intra-articular + peri-articular sacroiliac joint injection

- Outcome measures:
 - Positive response:
 - greater than 50% drop in VAS pain score
 - patients describing ADLs as “greatly improved”
 - Anesthetic response: VAS at one hour post-injection

Results

- Intra-articular alone:
 - 12.40% positive response in VAS and ADLs at 3 months
 - 42.5% anesthetic response rate

- Intra-articular and peri-articular:
 - 31.25% positive response in VAS and ADLs at 3 months
 - 62.5% anesthetic response rate

- Statistically significant improvement in combined injection group with respect to anesthetic response (P=.037) and pain/ADL at 3 months (P=.025)

- Significant extra-articular sacroiliac pain generators exist
Interspinous ligament

- Connects consecutive spinous processes
- Fan-shaped, middle fibers parallel to spinous processes
- Posteriorly blends with supraspinous ligament, which is continuous with thoracolumbar fascia
- Innervation: dorsal rami
- Function: Anchor transmitting anterior-posterior forces from extremities to spine via TLF and vertebral bodies

Interspinous ligament and LBP

- Experimental hypertonic saline injection to the lumbar interspinous ligament vs. lumbar erectorspinae muscles
 - Both caused acute axial LBP
 - Interspinous ligament injection recipients reported pain not affected by truncal flexion-extension movement (in contrast to erectorspinae group)
 - They often pointed to a location of pain 1-2 segments below the injection point

Iliolumbar ligament

- Restrains lumbosacral side bending, flexion and extension
- Stabilizes spine in setting of spondylolysis
 Jeong JC et al. The biomechanical functions of the iliolumbar ligament in maintaining stability at the lumbosacral junction. Spine 1987; 12:669-74
- Primarily innervated by Pacinian and Ruffini mechanoreceptors; also has plentiful free nerve endings
- Richest nerve endings at iliac wing

Iliolumbar ligament and biomechanics

- Cadaveric study using strain gauge sensors:
 - Slouching places mechanical stress on iliolumbar ligament
 - 100N Tension on erectorspinae and multifidi reverses slouch and relieves stress on iliolumbar ligament

Iliolumbar ligament and disc degeneration

- Annular fibers become less effective in absorbing mechanical forces in setting of disc degeneration
- Iliolumbar ligament may then take on additional mechanical stress and become subject to tears

Ligamentous degeneration first?

- Ligament and capsule as “epicenter” of joint inflammation
 - MRI, animal and human studies of hands, knees, and spine
 - Enthesis fibrocartilage due to ligamentous trauma, tearing and laxity may play a role in the pathophysiology of degenerative changes in adjacent joints

Muscle
Transversus abdominus

- Considered critical for lumbar strength and stability
- Origin: lowest six ribs, thoracolumbar fascia, anterior iliac crest, lateral inguinal ligament
- Connects linea alba to anterior pelvic wall
- Shares aponeurosis with internal and external obliques

Transversus abdominus activation

- EMG study: Activation pattern of trunk musculature with arm movements
 - In individuals without LBP: transversus abdominus contracted before limb movement initiated
 - Individuals with LBP: delayed transversus abdominus firing, following direction-specific patterns
- Suggests decreased motor control in setting of LBP
Multifidus anatomy

- Multiple fascicles; each originates at the most caudal aspect of its lumbar spinous process
- Attachments in fanlike projection to mammillary processes, iliac crest, and sacrum
- Fibers are continuous with deep laminae of thoracolumbar fascia, long dorsal sacroiliac ligament, and sacrotuberous ligament

Multifidus self-bracing mechanism

- Compresses intervertebral discs
- Facilitates lumbar lordosis
- Counteracts abdominal muscles during flexion
- Transfers energy from upper body to lower extremities
 - Multiple EMG studies: Multifidi activate during standing, sitting, trunk movement, lifting, and gait

LBP and multifidus deconditioning

- MR spectroscopy: Increased multifidus mean fat content in individuals with LBP vs. controls
 Mengiardi B et al. Fat content of lumbar paraspinal muscles in patients with chronic low back pain and asymptomatic volunteers: quantification with MR spectroscopy. Radiology 2006;240:786-92

- Multifidi biopsies in individuals with LBP compared with controls:
 - Higher distribution of type II fibers
 - Reduced diameter in both type I and type II fibers
LBP and decreased multifidus recruitment

- Hypertonic saline injection inducing unilateral LBP
- Visualization of multifidus muscles by ultrasound
- Bilateral multifidus recruitment with active arm lifts was diminished compared with controls

LBP and decreased multifidus recruitment

- Multifidus recovery is slow after LBP episodes
 - EMG study: Vs. controls, individuals in remission from LBP exhibited prolonged mean motor latency of short multifidus fibers when provoked by rapid arm movement

Myofascial pain syndrome

- Palpable tense bands of skeletal muscles
- Sustained sarcomere contraction
- Thought to have multiple triggers:
 - Muscle strain and overuse
 - Psychosocial stress
 - Postural habits
- “Trigger points:” Discrete, focal hyperirritable spots located on taut bands on skeletal muscle
- Peripheral sensitization phenomenon
Treatment of myofascial pain

• Address underlying structural, postural, psychological or ergonomic imbalance
• Evaluate for underlying medical conditions, such as hypothyroidism
• Trigger point release by needling
 – Effective for acute pain relief
 – Symptoms recur unless underlying problem is addressed

Muscles as pain generators

• Lidocaine and steroid facet injections in active adults aged 18-45 with axial LBP
 – Both groups received facet injection with lidocaine and steroid
 – One group also received continuous lidocaine advancing injection en route to facet
 – Pain relief measured at one week post-injection
 – Superior pain relief in recipients of continuous lidocaine advancing technique (P < 0.05)

Fascia
Fascia

• Multilayered, soft-tissue sheath
 – Divides muscles into organized groupings
 – Protects nerve and vascular structures
• Tissue continuum uniting and integrating different regions of the body

Thoracolumbar fascia

• Envelops and divides lumbar spine muscles into anterior, middle, posterior layers
• Posterior layer
 – Superficial: inferomedially directed fibers attaching at gluteus maximus, medial sacral crest, spinous processes, serratus posterior inferior aponeurosis, latissimus aponeurosis, and trapezius aponeurosis
 – Deep: inferolaterally directed fibers attaching thoracic spinous processes, rib angles, serratus posterior superior, deep neck fascia
 – Both layers converge at sacrotuberous ligament

Thoracolumbar fascia may stabilize lumbar spine and sacroiliac joint

• Transfers force between spine and extremities
• Traction applied to latissimus dorsi, gluteus maximus, erector spinae, and biceps femoris muscles displaces posterior thoracolumbar fascia

• Reduces lumbar axial displacement during flexion and extension

Histologic changes in TLF with LBP

- TLF samples taken from 24 patients undergoing their first lumbar surgery following positive discogram or facet block
- Histologic exam:
 - Aneural tissue
 - Ischemic changes
 - Similar to histology of diabetic microangiopathy

Treatment Strategies

Common acute LBP treatments

- Acetaminophen
- NSAIDs
- Topical preparations
- Modalities (heat, ice, massage, ultrasound)
- Manipulation
- Spinal injections: disc, facet
- Sacroiliac injections
Muscle balance training

- Correct tight hip flexors
- Strength and endurance of multifidus, transversus abdominus
- Address training errors

Optimization of biomechanics

- Address postural awareness
- Address fit of gear and shoewear
- Evaluate gym and field technique
- Possible role of manual manipulation

Medications

- Acetaminophen
- Topical preparations
- Antispasmodic
Injections

• Trigger point release
• Enthesis injections

Take-home points

• Look for pain generator to match history
• Consider interplay of bone, joint, ligament, muscle, fascia and enthesis in human movement and injury patterns
• When designing treatment, consider anatomical and biomechanical context LBP for each individual and sport.